POS0474 FACTORS ASSOCIATED WITH EROSIVE RHEUMATOID ARTHRITIS, A MULTIMARKER PRINCIPAL COMPONENT ANALYSIS (PCA) AND PRINCIPAL COMPONENT REGRESSION (PCR) ANALYSIS

نویسندگان

چکیده

Background Various clinical (disease activity, seropositive RA etc.) and metabolic risk factors (Dkk1 have been associated with erosive rheumatoid arthritis (RA). However, such might be intertwined, multicollinearity reduce our ability to discern the individual contribution score. Principal component analysis (PCA) is statistical technique for reducing dataset’s dimension principal regression (PCR) a based on PCA. PCR overcomes problem. Objectives To investigate bone using PCA PCR. Methods We conducted cross-sectional patients not responding first-level disease-modifying antirheumatic drug, candidate bDMARD treatment. Clinical, radiographic (both hands feet x-ray), laboratoristic densitometric (BMD parameters were collected. Sharp van der Heijde Score (SvdHS) was calculated by two independent readers. Serum samples collected assayed C-terminal telopeptide of type I collagen (CTX), Procollagen Intact N-Terminal Peptide (P1NP), Dkk1, Sclerostin (SOST), 25-OH-Vitamin D (VitD), PTH. applied dimensionality dataset find clusters variables recording largely redundant information. PCs selected eigenvalues explaining >75% total variance. used predict SvdHS. Results analyzed package GraphPad Prism version 9.5.0 Windows, Software, San Diego, California USA. 62 aged 57.2 years (SD 12.1) consecutively enrolled. Mean DAS28-CRP 4.17 1.27) median SvdHS 24 (IQR 12-53). The loadings plot ( Figure 1 ) shows correlated in (vectors). In Table are presented results as outcome. found that age, GC treatment, ACPA titer, RF CRP levels, ESR, CTX serum levels Dkk1 significantly positively SvdHS, whereas P1nP PGA negatively 1. Loadings from When vectors close, forming small angle, they represent correlated. If meet each other at 90°, likely diverge form large angle (close 180°), negative Variable Estimate Standard error P value Intercept -13,85 26,92 0,61 Age 0,54 0,18 0,006 Weight 0,004 0,13 0,97 daily dose 2,05 0,68 0,007 TJ -0,22 0,29 0,45 SJ -0,06 0,34 0,85 -2,08 0,84 0,02 PhGA -0,45 1,04 0,66 0,003 0,03 0,10 0,04 0,01 0,39 0,15 ESR 0,44 0,12 0,002 Hb -0,14 0,16 0,40 30,05 13,62 -0,20 0,08 0,32 0,14 SOST 0,28 0,52 OPG -0,39 0,72 0,59 RANKL -12,86 13,49 0,3514 PTH -0,2879 0,1694 0,1041 VitD 0,1291 0,1990 0,5235 BMD LS Ts 1,163 1,694 0,4999 Neck -0,8988 1,585 0,5766 Tot -0,7266 1,492 0,6314 Conclusion seropositivity, inflammation RA. independently disease less erosions. REFERENCES: NIL. Acknowledgements: Disclosure Interests Giovanni Adami Speakers bureau: EliLilly, Theramex, Amgen, UCB, Galapagos, Fresenius Kabi, Orsolini: None declared, Angelo Fassio: Ombretta Viapiana: Elena Sorio: Camilla Benini: Davide Gatti: Bertelle: Maurizio Rossini: declared.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring gas demand security using Principal Component Analysis (PCA): A case study

Safeguarding the energy security is an important energy policy goal of every country. Assuring sufficient and reliable resources of energy at affordable prices is the main objective of energy security. Due to such reasons as special geopolitical position, terrorist attacks and other unrest in the Middle East, securing Iran’s energy demand and increasing her natural gas exports have turned into ...

متن کامل

Principal Component Projection Without Principal Component Analysis

We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

General practitioners\' views on key factors affecting their desired income: A principal component analysis approach

Background: Based on the target income hypothesis, the economic behavior of physicians is mainly affected by their target income. This study aimed at designing an instrument to explain how general practitioners (GPs) set their desired income.    Methods: A self-administered questionnaire of affecting factors on GPs' target income was extracted from literature reviews and a small qual...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of the Rheumatic Diseases

سال: 2023

ISSN: ['1468-2060', '0003-4967']

DOI: https://doi.org/10.1136/annrheumdis-2023-eular.3624